SIMILARITY IN THE PROBLEM OF CONTACT BETWEEN ELASTIC BODIES*

Abstract

F.M. BORODICH

Contact between and collision of two elastic bodies, with the distance between them determined by an arbitrary, smooth, positive and positively homogeneous function, is considered. Such functions are numerous (quadratic forms and fourth degree forms are particularly special examples of such functions). Although explicity solutions of such general problem are not obtained in the end, nevertheless certain qualitative conclusions are reached (in particular, qualitative results of the Hertz theory are obtained without utilizing the explicit formulas for the potential of an oblate ellipsoid).

1. Impressing a perfectly rigid stamp into an elastic half-space. We shall deal only with the stamps, the surface of which $x_{3}=f\left(x_{1}, x_{2}\right)$ is determined by a smooth, positive, positively homogeneous function of degree β : i.e.

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)>0, \forall\left(x_{1}, x_{2}\right) \in R^{2} \backslash\{0\} \\
& f\left(x_{1}, x_{2}\right) \subseteq C^{1}\left(R^{2}\right) ; f\left(\lambda x_{1}, \lambda x_{2}\right)=\lambda^{\beta} f\left(x_{1}, x_{2}\right), \forall \lambda \geqslant 0
\end{aligned}
$$

We note that the function satisfying (1.1) is fully defined by its value on the unit circle and by its degree β. When $\beta>1$, it has a horizontal tangent plane at the zero, i.e. there is no singularity at the zero in the contact problem. We know/1/ that all stresses and displacements in the elastic half-space $x_{3} \leqslant 0$, at the boundary plane of which the tangential stresses $\sigma_{i s}(i=1,2)$ are zero, can be expressed by a single hamonic function F. In particular, when $x_{3}=0$ we have

$$
\begin{equation*}
u_{3}=2(1-v) F\left(x_{1}, x_{2}, 0\right), \sigma_{33}=2 \mu \partial F\left(x_{1}, x_{2}, 0\right) / \partial x_{3} \tag{1.2}
\end{equation*}
$$

where v, μ denote the Poisson's ratio and shear modulus of the half-space.
Let a perfectly rigid stamp be impressed without friction into an elastic half-space. When the form of the stamp $f\left(x_{1}, x_{2}\right)$ and the impressing force P are both given, we must find the region G at the boundary of the half-space at the points at which the stamp is in contact with the half-space. Here the constant a represents the elastic approach of the bodies and the harmonic function F appears in (1.2). The quantities sought must satisf Y_{Y} the following conditions (∂G is the boundary of the open region G):

$$
\begin{aligned}
& c_{1} F\left(x_{1}, x_{2}, 0\right)=f\left(x_{1}, x_{2}\right)-\alpha_{1}\left(x_{1}, x_{2}\right) \in G \cup \partial G \\
& \partial F\left(x_{1}, x_{2}, 0\right) / \partial x_{3}=0,\left(x_{1}, x_{2}\right) \in R^{2} \backslash G
\end{aligned}
$$

$F=0$ at ∞ when $x_{3} \neq 0$, and

$$
P=c_{2} \iint \frac{\partial F\left(x_{1}, x_{2}, 0\right)}{\partial x_{3}} d x_{1} d x_{2}, \quad c_{1}=2(1-v), \quad c_{2}=2 \mu
$$

We note that the equation $\partial F / \partial x_{3}=0$ in (1.3) is also satisfied on ∂G. Without this condition the system (1.3) becomes indeterminate and the region G of contact cannot be determined uniquely / $/ 2$.

Theorem I. Let the stamp surface $f\left(x_{1}, x_{2}\right)$ be defined by a positive, smooth, positively homogeneous function of degree $\beta>1$. Let the harmonic function $F_{1 r}$ region G_{1} and constant α_{1} yield a solution to the contact problem (1.3) for the fixed force p_{1}. Then a solution of the contact problem for any force P will be given by the triad F, G, a, defined by the following relations:

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3}\right)=\rho^{-B} F_{1}\left(\rho x_{1}, \rho x_{2}, \rho x_{3}\right),\left(x_{1}, x_{2}\right) \in G \tag{1.4}
\end{equation*}
$$

if and only if

$$
\left(\rho x_{1}, \rho x_{2}\right) \in G_{1}, \alpha=\rho^{-\beta} \alpha_{1}, \rho=\left(p_{1} / P\right)^{1 /(\beta+1)}
$$

[^0]Proof. We define, for any $\lambda>0$, the region G_{λ}, function $F_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)$ and constant α_{λ} as follows:

$$
\begin{equation*}
F_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)=\lambda^{-\beta} F_{1}\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right),\left(x_{1}, x_{2}\right) \in G_{\lambda} \tag{1.5}
\end{equation*}
$$

if and only if

$$
\left(\lambda x_{1}, \lambda x_{2}\right) \in G_{1}, \alpha_{\lambda}=\lambda^{-\beta} \alpha_{1}
$$

We shall show that F_{λ} is a solution of the contact problem (1.3) for a stamp of the form $f\left(x_{1}, x_{2}\right)$ in the region G_{λ}, with the elastic approach constant a_{λ} and some compressive force
P_{λ}, which will be determined later. The definition of function F_{λ} implies that it is harmonic and vanishes at infinity. Taking into account (1.5), (1.3) and (1.1), we obtain

$$
\begin{aligned}
& c_{1} F_{\lambda}\left(x_{1}, x_{2}, 0\right)=c_{1} \lambda^{-\beta} F_{1}\left(\lambda x_{1}, \lambda x_{2}, 0\right)=\lambda^{-\beta} f\left(\lambda x_{1}, \lambda x_{2}\right)-\lambda^{-\beta} \alpha_{1}= \\
& \quad f\left(x_{1}, x_{2}\right)-\alpha_{1} \lambda^{-\beta},\left(x_{1}, x_{2}\right) \in G_{\lambda} \cup \partial G_{\lambda}
\end{aligned}
$$

i.e. the first condition of (1.3) is fulfilled. The validity of the second condition of (1.3) is proved in the same manner. Let us find the compressive force P_{λ} corresponding to this solution

$$
P_{\lambda}=2 \mu \iint_{G_{\lambda}} \frac{\partial F_{\lambda}}{\partial x_{3}} d x_{1} d x_{2}=2 \mu \lambda^{1-\beta_{\lambda}-2} \iint_{G_{\lambda}} \frac{\partial F_{1}}{\partial\left(\lambda x_{3}\right)} d\left(\lambda x_{1}\right) d\left(\lambda x_{2}\right)=\lambda^{-1-\beta_{1}}
$$

If we take

$$
\begin{equation*}
\lambda=\left(P_{1} / P\right)^{1 /(\beta+1)} \tag{1.6}
\end{equation*}
$$

then $P_{\lambda}=P$, and F_{λ}, G_{λ} and α_{λ} are solutions of the contact problem for this force and are found using the formulas (1.4).

Theorem l leads to the following qualitative corollaries (which hold under the assumptions made above):

1) The contact area a varies proportionally to the load raised to power $1 /(\beta+1)$;
2) Approach of the stamp to the half-space is proportional to the load raised to power $\beta /(\beta+1)$.
Indeed, the definition of the region G_{λ} implies that the size of the contact area varies proportionally to λ^{-1} and this yields, after substituting λ from (1.6), the first assertion. The second assertion follows from the third formula of the system (1.4).
2. Contact of two elastic bodies initially touching each other. Let us place the origin of Cartesian x_{1}, x_{2}, x_{3}-coordinates at the point of initial contact between two bodies. We combine the $x_{1} O x_{2}$ plane with the general plane tangent to the surfaces of the bodies at the point of contact, and assume that the resultants of compressive forces lie on the x_{8} axis. We shall denote the quantities referring to the body $x_{i} \geqslant 0$ by the plus, and those referring to the second body by the minus sign, and make an assumption normal in such cases $/ 1,3 /$, that the region G of contact is small and both bodies can therefore be replaced by half-spaces. Then the problem reduces to that of obtaining the harmonic functions F^{+}, F^{-}of the region G and constant α, satisfying the following conditions:

$$
\begin{gathered}
2\left(1-v^{+}\right) F^{+}+2\left(1-v^{-}\right) F^{-}=f\left(x_{1}, x_{2}\right)-a,\left(x_{1}, x_{2}\right) \in G \cup \partial G \\
F^{+}=0 \text { at } \infty, F^{-}=0 \text { at } \infty \text { when } x_{3}=0
\end{gathered}
$$

$$
\frac{\partial F^{+}\left(x_{1}, x_{2}, 0\right)}{\partial x_{3}}=\frac{\partial F^{-}\left(x_{1}, x_{2}, 0\right)}{\partial x_{3}}=0, \quad\left(x_{1}, x_{2}\right) \in R^{2} \backslash G
$$

$$
\mu^{+} \frac{\partial F^{+}}{\partial x_{3}}=\mu^{-} \frac{\partial F^{-}}{\partial x_{3}}, \quad\left(x_{1}, x_{2}\right) \in G
$$

$$
P=2 \mu^{+} \int_{G} \int_{G} \frac{\partial F^{+}}{\partial x_{3}} d x_{1} d x_{2} ; \quad f\left(x_{1}, x_{2}\right)=f^{+}\left(x_{1}, x_{2}\right)+f^{-}\left(x_{1}, x_{2}\right)
$$

where $f\left(x_{1}, x_{2}\right)$ is a function of the distance separating the surfaces of the bodies and P is the compressive force. The last two formulas of (2.1) follow from the condition that the bodies are in equilibrium.

Lemma. Let the harmonic function F, region G and constant α all satisfy the system (1.3) for the given force and function $f\left(x_{1}, x_{2}\right)=f^{+}\left(x_{1}, x_{2}\right)+f^{-}\left(x_{1}, x_{2}\right)$ with the constants

$$
c_{1}=\left\{2\left[\left(1-v^{+}\right) \mu^{-}+\left(1-v^{-}\right) \mu^{+}\right]\right\}, c_{2}=2 \mu^{+} \mu^{-}
$$

and let the functions F^{+}and F^{-}be defined by the formulas

$$
\begin{equation*}
F^{+}=\mu^{-} F, F^{-}=\mu^{+} F \tag{2.2}
\end{equation*}
$$

Then the functions F^{+}, F^{-}, region G and constant α all satisfy the system (2.1). The lemma is proved by substituting (2.2), c_{1} and c_{2} into (1.3).

The lemma and Theorem 1 together yield an assertion, analogous to Theorem 1 , for the contact of two elastic bodies, and this leads to the corresponding assertions 1 and 2 . In particular, when $\beta=2$, we obtain the Hertz result $/ 1,3 /$ and $\beta=4$ yields the Shtaerman result /3/.
3. Problem of collision of two bodies. Using the assumptions of the Hertz's theory of impact $/ 4 /$ we obtain

$$
\begin{equation*}
\frac{m^{+} m^{-}}{m^{+}+m^{-}} \frac{d^{z}}{d t^{2}} \alpha=-P \tag{3.1}
\end{equation*}
$$

where m^{+}and m^{-}denote the masses of the colliding bodies and P is the pressure between the bodies.

Theorem. 2. Let the distance between the surfaces of two colliding elastic bodies at the instant of contact be determined by a positive, smooth, positively homogeneous function of degree $\beta>1$. Then the maximum approach α_{*} of the bodies and time of collision T will be proportional to the velocity v of approach of the bodies before the collision, of degree $2 \beta /(2 \beta+1)$ and $-1 /(2 \beta+1)$ respectively. The proof is obtained by integrating (3.1) with assertion 2 of Theorem 1 taken into account, in exactly the same manner as in the derivation of the Hertz theory $/ 4,5 /$. In particular, we obtain

$$
T=\sqrt{\pi} \frac{2 \beta}{2 \beta+1} \frac{a_{*}}{v} \Gamma\left(\frac{\beta}{2 \beta+1}\right) / \Gamma\left(\frac{4 \beta+1}{4 \beta+2}\right)
$$

Setting $\beta=2$ yields the result due to Hertz /4/.
We note that in case of collision of two solids of revolution the surfaces of which satisfy the condition of close contact of order $2 n$ (n is a natural number), formulas analogous to those obtained above follow from the Shtaerman solution /5/. The case of axisymmetric contact problem was also studied in /6/.

The author thanks A.G. Khovanskii for assessing the paper and V.M. Aleksandrov and V.D. Kliushnikov for advice.

REFERENCES

1. RABOTNOV Iu.N., Mechanics of a Deformable Solid. Moscow, NAUKA, 1979.
2. LUR'E A.I., Theory of Elasticity. Moscow, NAUKA, 1970.
3. SHTAERMAN I.Ia., Contact Problem of the Theory of Elasticity. Moscow-Leningrad, GOSTEKHIZDAT, 1949.
4. LOVE A.E.H., A Treatise of the Mathematical Theory of Elasticity. N.Y. Dover, 1944.
5. KIL'CHEVSKII N.A., Dynamic Contact Compression of Solids. Impact. Kiev, NAUKOVA DUMKA, 1976.
6. TSARIUK L. B., On impressing a convex, axisymmetric stamp into rigid-plastic half-space. Izv. Sev. Kavkaz. nauchn. tsentra vyssh. shkoly, No.4, 1973.

[^0]: *Prik1.Matem. Mekhan. ,Vol. 47,No. 3,pp. 519-521, 1983

